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A common dilemma in many types of research 
comes about from the need to deal with incomplete 
or missing data. Within a single data collection 
session, missing data often comes in the form of a 
participant’s refusal to answer a specific interview 
question, skipped items or scales (either intention­
ally or unintentionally) on a paper-and-pencil sur­
vey, or perhaps an early termination of the session, 
with only partially completed tasks or instruments. 
In the case of longitudinal research with multiple 
data collection sessions, missing data may be more 
pervasive, with respondents providing data spo­
radically across time or dropping out of the study 
altogether. It might even be that some participants 
enter a longitudinal study late, such that their data 
are not available for the initial stages of the research. 

Traditionally, the problem of missing data has 
been seen as a costly nuisance and sometimes even 
a “fatal flaw” to a research project. From a practical 
perspective, missing data often means more time 
and money to recruit study completers and achieve 
the target sample size. From a methodological per­
spective, the frequently-used strategies of case dele­
tion (listwise or pairwise) or mean substitution 
have been shown to create more problems than they 
solve, posing threats to both statistical conclusion 
validity (low power and/or biased tests of signifi­
cance) and to external validity (general ambiguity 
about the population to which inferences reason­
ably can be made). 

Recent statistical work has allowed for an almost 
revolutionary shift in the manner in which missing 
data can be handled. More important, the execution 
of contemporary missing data techniques can obvi­
ate many practical and statistical concerns. Modern 
missing data strategies enhance efficiency, preserve 
resources, and guard against incorrect statistical 
inference. In fact, one could argue that the incorpo­
ration of corrective missing data analyses and even 
purposeful missing data designs shortly will be 
considered routine and expected by scientific edito­
rial boards and funding review panels. In the sec­
tions that follow, we describe conditions under 

which data are missing and present some of the 
newer maximum-likelihood based methods. We then 
discuss the implementation of some of these meth­
ods in the context of stress and trauma research. We 
also provide resources for those wishing to learn 
more about the methods. 

Classes of incomplete or missing data. According to 
Little and Rubin (1987), Rubin (1987), and Schafer 
(1997), among others, there are two fundamental 
conditions under which data are missing: ignorable 
and nonignorable. Under the ignorable condition, the 
presence or absence of data (a dichotomous 
“missingness” variable M) on a particular variable 
of substantive interest (Y) can be explained or pre­
dicted by one or more other variables in the data set 
(X , X , etc.), but not solely by the variable that is

1 2itself missing data (Y). Moreover, while the pattern 
of missing data (M) may be related to scores on the 
variable that is missing data (Y), scores on the other 
variables (X , X , etc.) are expected to mediate the

1 2relationship between the variable defining the pat­
tern of missing data (M) and the variable with 
missing data (Y). Finally, we must assume there are 
no interactions between M and any of the X vari­
ables in the prediction of scores on Y. When these 
assumptions hold—as they do in many research 
situations—the missing information on Y is ex­
plained by the information contained in the X vari­
ables. We can be reasonably correct in estimating 
missing values of Y, since we are assured that the 
relationship between the Xs and Y is the same re­
gardless of whether the Y data are present or absent. 
Therefore, we can use the known relationship be­
tween the Xs and the observed values of Y to derive 
the unobserved or missing values of Y. Rubin (1976) 
used the term missing at random to characterize this 
condition, and others have termed this accessible 
(Graham, Hofer, Donaldson, MacKinnon, & Schafer, 
1997) or recoverable (McArdle, 1994). 

A more restrictive form of the ignorable condi­
tion is known as missing completely at random. Here, 
the above assumptions hold with the exception that 
M is not related to the X variables or to Y. Thus, the 
information from the X variables again can be used 
to estimate missing values of Y. Data are typically 
missing completely at random when the researcher 
intentionally plans to randomly exclude certain 
participants from selected assessments, either within 
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a single data collection occasion or across occasions. In this 
instance, there is deliberate use of modern missing data 
methods to reduce the burden on study participants and 
enhance the cost-effectiveness of the research: Each partici­
pant furnishes less information, but the information from 
the sample as a whole is preserved. In the real world of data 
collection, research having a planned missingness compo­
nent is plagued with the usual difficulties of data omission 
or participant attrition. In the end, then, what might begin 
as a missing completely at random situation becomes a 
missing at random but still ignorable or recoverable one. 

The nonignorable condition obtains when the 
missingness dichotomy (M) is related to scores on the 
variable having missing data (Y), but there is no X variable 
or combination of X variables that can accurately predict M 
or scores on Y. Very simply, the researcher has no available 
information that can assist in the estimation of the missing 
values of Y, and the kinds of missing data methods pre­
sented here may not be as useful. 

A researcher never fully knows the conditions under 
which data are missing. Why, for example, some partici­
pants fail to respond to particular items or others fail to 
attend scheduled assessment sessions are likely attribut­
able to a combination of ignorable and nonignorable fac­
tors. Nonetheless, current consensus (e.g., Graham et al., 
1997; McArdle, 1994; McArdle & Hamagami, 1992; Schafer 
& Olsen, 1998) seems to favor the presumption of 
ignorability and advises the use of one or more of the 
maximum likelihood-based missing data techniques that 
are rapidly becoming available. 

Contemporary missing data methods. We present two gen­
eral approaches to maximum likelihood-based treatment 
of missing data that have appeared in the methodological 
literature. The first approach is raw or direct maximum likeli­
hood, wherein statistics of interest (e.g., means, standard 
deviations, regression coefficients and their standard er­
rors) are directly estimated for the full sample from the 
existing and limited data. That is, the desired numerical 
results are obtained, but there is no attempt to “fill in” 
values where data are missing. 

An early but still viable method for direct maximum 
likelihood is the application of multiple-group structural 
equation modeling (SEM), first proposed by Joreskog and 
Sorbom (1979) and Horn and McArdle (1980, and later 
elaborated by Allison (1987) and Muthen, Kaplan, and 
Hollis (1987), among many others. The method requires 
that subsamples of the full sample be created on the basis 
of common patterns of missing data. For example, given 
four variables, participants having complete data on all 
four variables would form one subsample; participants 
missing data only on the first variable would form another 
subsample; those missing data only on the second variable 
would be another subsample; those missing data on both 
the first and second variable would be another subsample; 
and so on. Each subsample then becomes a separate group 
in the multiple-group SEM. Directions for parameterizing 
this type of model can be found in a number of sources, 
including Allison (1987), Muthen et al.(1987), Joreskog and 

Sorbom (1993), and Graham et al. (1997), and advances in 
the use of this method have been proposed by McArdle 
and his colleagues (e.g., McArdle, 1994; McArdle & 
Hamagami, 1992, 2001; McArdle & Woodcock, 1997). As 
with all SEM procedures, the results—values of parameter 
estimates—maximize the likelihood of the data for the full 
sample, which is a function of the likelihoods of the several 
subsamples. Thus, by partitioning the sample into differ­
ent groups based on patterns of missing and complete 
data, this procedure uses information from all participants 
without any need to delete cases. Multiple-group SEM is 
available in most SEM software packages. 

A disadvantage of multiple-group SEM is that large 
studies with many variables may produce numerous pat­
terns of missingness and result in an overly complicated 
and implausible model in which there are more variables 
than cases for one or more groups. An alternative direct 
maximum likelihood method optimizes likelihood at the 
level of the individual, rather than the group (McArdle & Bell, 
2000; Neale, Boker, Xie, & Maes, 1999). Again, the likeli­
hood of the full sample is a function of the likelihoods of its 
components, in this case, the individual likelihoods, each 
of which is maximized using parameter estimates only for 
the data that individual brings to the study. Once more, the 
analyses take advantage of all of the data, no participants 
are discarded, and sample size remains protected. SEM 
software programs that employ individual-level direct 
maximum likelihood estimation include AMOS (Arbuckle, 
1995), Mplus (Muthen & Muthen, 1998), and Mx (Neale et 
al., 1999). 

Some readers may be familiar with a landmark article 
on the analysis of longitudinal psychiatric data by Gibbons 
and Hedeker and colleagues (Gibbons et al., 1993). In that 
article, the authors overviewed special characteristics of 
longitudinal data. They also cautioned against the use of 
the traditional statistical methods of end-point analysis (in 
which the dependent variable is simply the difference 
between a participant’s baseline and last available data 
point, regardless of the latter’s timing) and mixed effects 
and multivariate repeated-measures analysis of variance 
(where listwise deletion is frequently applied to accommo­
date missing data). In addition, they objected to the restric­
tive assumptions required to use repeated-measures analy­
sis of variance with longitudinal data. In this and a series of 
follow-up works (e.g., Hedeker & Gibbons, 1994, 1997), 
these methodologists advocated the use of random-effects 
regression, which uses the direct maximum likelihood 
approach for data that are missing in a dependent variable 
measured across time. Random-effects regression is also 
employed by Bryk and Raudenbush (1992) within their 
hierarchical linear modeling framework. Though random-
effects regression does not accommodate missingness 
within predictors or covariates, it has one distinct advan­
tage over other direct maximum likelihood methods. Not 
only can participants be missing data for one or more 
assessments in the time series, but there are no restrictions 
regarding when the assessments are made. Thus, the re­
searcher gains a lot of flexibility in planning and executing 
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a study: All participants need not be assessed on a rigid 
schedule. 

The second general approach to the treatment of missing data 
is imputation, for which actual values for the missing infor­
mation are derived and then employed in the calculation of 
parameter estimates and standard errors. The proper use 
of imputation mandates a recognition of two sources of 
uncertainty in the imputed value for a missing datum: 
uncertainty in the form of sampling variability and uncer­
tainty regarding the correctness of the imputed value itself. 
Accordingly, Rubin (1987) and Little and Rubin (1987) 
recommended that two or more imputations be performed, 
resulting in the creation of two or more complete data sets. 
Using this multiple imputation method, whatever analyses 
are of interest to the researcher (analysis of variance, mul­
tiple regression, etc.) are conducted on each data set. Next, 
parameter estimates and standard errors are saved and 
combined in a rather straightforward manner, using for­
mulas proposed by Rubin (1987). Parameter estimates are 
merely averaged, and their standard errors are a weighted 
composite of between and within variability. (Recent work 
has merged the multiple imputed sets using multiple-
group SEM [McArdle & Hamagami, 2001]). Test statistics 
then can be calculated and represent the findings of the 
study. No cases are deleted, and findings take advantage of 
information from all participants, even those who sup­
plied only partial data. The number of required imputa­
tions is not very large, usually between three and five and 
rarely more than ten. 

One technique for arriving at multiple imputations of 
missing data relies on what is known as propensity scores, as 
represented in the SOLAS software program (Statistical 
Solutions, 1999). To offer a simplified explanation: A 
missingness variable M is created for a particular variable 
Y that has missing data. A number of predictors (X , X , etc.)

1 2are identified by the researcher, and M is regressed on 
these X variables. The program then assigns each partici­
pant a predicted probability of missingness index. Partici­
pants are arranged into percentile groups (quintiles, by 
default in SOLAS) according to their predicted probability 
of missingness. Participants with missing Y values within 
specific percentile groups are each assigned the value of 
another member of their group, selected at random with 
replacement. This procedure is repeated for as many inde­
pendent imputations as the analyst desires, thus yielding 
multiple complete data sets. These data sets are, in turn, 
submitted to separate data analytic procedures, followed 
by a synthesis of parameter estimates and standard errors. 

Another technique for obtaining multiple imputations 
is data augmentation, as implemented by Schafer and his 
associates in a number of specialized programs distributed 
through The Pennsylvania State University. Very briefly 
and perhaps too simplistically, data augmentation uses an 
iterative or multistage process in which information about 
the relationship between other variables (the Xs) and data 
that are available on the Y variable is used to predict scores 
for the missing Y data. The predicted value is used to create 
a distribution of possible scores for each person who is 

missing data on Y. From this distribution, a random value 
is selected and is used in the recalculation of the prediction 
equation, which produces predicted values from which 
another distribution of missing data values is developed 
for each person. This process continues until a convergence 
criterion is achieved. The predicted values at each step are 
saved, and from these the imputed value is randomly 
selected, and the first imputation is complete. The process 
begins again and is repeated for as many times (imputa­
tions) as the analyst requests. 

Though the direct maximum likelihood-based and 
multiple imputation approaches to missing data appear 
quite different, in fact, they produce parameter estimates 
and standard errors that are fully comparable when certain 
assumptions (i.e., multivariate normality and ignorable 
condition) are correct. There may be some reasons to select 
one over the other (see, e.g., Enders, 2001, and Schafer & 
Olsen, 1998). A third approach, the EM algorithm followed 
by bootstrap estimation of standard errors, is overviewed 
by Graham et al. (1997). Studies have demonstrated the 
effectiveness of missing data methods in reproducing find­
ings highly comparable to those that would have been 
obtained had the full data set been available. Moreover, 
any of these more contemporary maximum likelihood-
based procedures is superior to the traditional choices of 
case deletion and mean substitution. 

Examples of modern missing data strategies in stress and 
trauma research. In this section, we summarize a variety of 
applications in which direct maximum likelihood or mul­
tiple imputation methods were employed. The first are 
from two studies of PTSD and its correlates that used the 
same sample of male and female Gulf War veterans. In 
both studies, participants were assessed on two occasions, 
immediately upon return to the United States from the 
Gulf region and again 18 to 24 months later. The first study 
(King et al., 2000) was interested in how PTSD symptoma­
tology might influence self-reported accounts of trauma 
exposure. The second study (Erickson, Wolfe, King, King, 
& Sharkansky, 2001) concerned the association between 
PTSD and depression. Both used a cross-lagged panel 
design, with each of two variables measured on each of two 
occasions, and structural equation modeling. Those who 
conduct such longitudinal research on veteran popula­
tions are well aware of the issue of attrition and inability to 
locate participants over repeated assessments. Such was 
the case with this cohort. At the initial assessment, there 
were 2,942 participants; at the second assessment, the 
number had dropped to 2,295. Obviously, the lower value 
would be sufficient for any analyses, but with listwise 
deletion there is the question of external validity. Do we 
wish to generalize findings only to those veterans who 
made themselves available on both occasions? The missing 
data were judged to satisfy the ignorable condition, and the 
Mplus software program (Muthen & Muthen, 1998) was 
used for the structural equation modeling. The effective 
sample size was maintained at 2,942. 

A thoroughly detailed demonstration of the propensity 
score approach to multiple imputation is supplied by 
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Lavori, Dawson, and Shera (1995). They described a ran­
domized, double-blind clinical trial to test the efficacy of 
two drugs for treating panic disorder, along with a pla­
cebo. Accordingly, there were three groups, who were 
treated and assessed over an 8-week period. The full sample 
size at the outset of the clinical trial was 1,168. Attrition was 
a problem in all three conditions, but especially in the 
placebo condition, where the number of participants de­
creased from 391to 220, a 44% loss. To restore the data to the 
full complement, Lavori et al. proceded from the earliest 
assessment where missing data appeared (week 3), and 
then sequentially performed waves of 10 multiple imputa­
tions for each of the subsequent assessments in the study, 
thus filling in incomplete data through week 8. They 
concluded that they were able to fully exploit a complete 
data set and pointed out that they had produced a veridical 
multiply imputated database available to future research­
ers. 

Another application of multiple imputation involved a 
study examining the long-term health and adjustment of a 
group of repatriated Vietnam-era aviators who were held 
as prisoners of war (POWs), relative to a group of matched 
control aviators who were not captured (Keane et al., 2001). 
One set of analyses concerned captivity status as a modera­
tor of the relationship between neurocognitive functioning 
assessed in the 1970s and intelligence test scores two 
decades later. At the initial assessment, neurocognitive 
functioning data were obtained for 119 POWs and 98 
controls. By the time intelligence was measured in the 
1990s, the sample size dropped to 42 POWs and 38 con­
trols. Using captivity status, 1970s intelligence scores, and 
age at time of the second assessment as covariates, the 
SOLAS propensity score method was used to multiply 
impute 10 datasets, resulting in complete contemporary 
intelligence data for all participants. Thus, sample size was 
restored. Hierarchical moderated multiple regression analy­
ses were performed on each data set, and the SOLAS roll-
up function combined the results across the 10 datasets. 

Schnurr, Spiro, Aldwin, and Stukel (1998) were inter­
ested in the association between trauma exposure and 
physical health outcomes. They drew 1,079 cases from a 
large-scale longitudinal study of World War II and Korean 
Conflict veterans and examined the course of physical 
symptoms over some 30 years. As might be expected, there 
were missing data in the assessments of physical symp­
toms over time, with the number of assessments ranging 
from 2 to 10; 95% of the sample completed at least 5 
assessments. Despite the discrepancy in the number of 
assessments, these researchers were able to extrapolate 
trends across the full interval of ages 30 to 75 years to model 
the course of physical symptoms. Sample size remained at 
1,079, and inferences were generalizable to the full popu­
lation referenced by this sample. The analytic tool used by 
Schnurr et al. was the generalized estimating equation 
technique, a SAS macro created by Zeger and Liang (1986) 
that employs the direct maximum likelihood approach to 
missing data. The class of programs (MIXREG, MIXOR, 
etc.) developed by Hedecker and Gibbons (1994, 1996) and 

the Hierarchical Linear Modeling (HLM; Bryk & 
Raudenbush, 1996) software packages also are appropri­
ate for the study of individual change or trajectory over 
time where data are missing in the time-dependent vari­
able. 

Our final example from the stress and trauma domain 
is an application of planned missingness for the purpose of 
reducing data collection time in a national telephone risk 
and resilience survey of Gulf War veterans (King, King, & 
Vogt, 2001). The design is cross-sectional. For this study, 
we were constrained by budget and practicality to a 45­
minute interview, judged as a maximum of about 250 items 
or questions that could be administered by telephone. Our 
ideal item set, however, numbered approximately 400. We 
adapted Graham, Hofer, and MacKinnon’s (1996) mul­
tiple-form design by constructing six separate but system­
atically overlapping interview forms, with random assign­
ment of items to forms. Each veteran was administered 5/ 
8 of the full item set, thus achieving our goal of no more 
than 250 items to each participant. Multiple imputation 
will be applied to this partial data set to fill in or simulate 
complete data for subsequent analyses. 

Missing data resources. The Pennsylvania State Univer­
sity Methodology Center website (http:// 
methcenter.psu.edu/homepage.shtml) provides a wide-
ranging selection of materials pertaining to missing data 
techniques, including an extensive reference list, 
downloadable publications and technical reports, an­
nouncements of conferences and workshops, and free 
software for multiple imputation. Regarding the latter, at 
this website are housed Graham and Hofer’s EMCOV 
program and Schafer’s data augmentation software series 
of NORM, PAN, MIX, and CAT. The website also provides 
links to other sites that feature software that can handle 
missing data. 

Another website related to missing data is Multiple 
Imputation Online: http://www.multiple­
imputation.com. This site offers content about the prin­
ciples of multiple imputation and contact information for 
experts. The site also lists several other macros for missing 
data analyses and programs that are not discussed here, 
such as MICE by van Buuren and Oudshoorn and AMELIA 
by Honaker, Joseph, King, Scheve, and Singh, both freeware. 

SOLAS is a commercially available missing data pro­
gram. It provides two different multiple imputation proce­
dures (one of which is the propensity score method de­
scribed previously), data visualization tools (that graphi­
cally present the types and patterns of missing data), and 
a set of univariate and multivariate statistical techniques 
(descriptives, t-tests, analysis of variance, and multiple 
regression). Once the imputation process is completed and 
selected analyses conducted, SOLAS automatically com­
bines results using the Rubin (1987) algorithms. SOLAS 
affords easy data importation from and exportation to 
most commonly used software packages. It is worth noting 
that SAS is about to release two procedures, PROC MI and 
PROC MIANALYZE, thereby making the full range of the 
SAS system amenable to multiple imputation methods. 
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Two of the direct maximum likelihood SEM programs 
that facilitate missing data analyses at the individual level, 
AMOS (Arbuckle, 1995) and Mx (Neale et al., 1999), have 
graphical-user interfaces. Thus, the analyst need only draw 
the appropriate path diagrams and not necessarily be 
versed in the syntax for the programs. The Mx program, 
after drawing the model, will produce and save a script file 
with the matching syntax for future use. Mx is freeware, 
obtainable from Neale’s Virginia Commonwealth Univer­
sity website: http://views.vcu.edu/mx/. The AMOS pro­
gram and Mplus (Muthen & Muthen, 1998) provide likeli­
hood ratio-based tests of overall model-data fit. It is impor­
tant to note that these programs, and all SEM programs, 
can be easily adapted to accommodate any of the analytical 
procedures subsumed by the general linear model, as 
examples, randomized group analysis of variance or cova­
riance and simple bivariate and multiple regression. 

Regarding random-effects regression resources, 
Hedeker’s website (http://tigger.uic.edu/~hedeker/ 
mixreg.html) contains the original MIXREG program and 
its variations (MIXOR, MIXNO, and MIXPREG), which are 
free and downloadable. This website also provides refer­
ences and downloadable publications by Hedeker and 
Gibbons and their collaborators. The HLM website is http:/ 
/www.ssicentral.com/hlm/hlm.htm. It contains examples 
of HLM analyses, reference lists, and an online index to the 
Bryk and Raudenbush text (1992). A feature in the latest 
version of HLM (5.2) is the automated analysis of multiply-
imputed data, in which correct parameter estimates and 
standard errors are calculated on data sets multiply im­
puted from other software. 

The three primary books on missing data, those by 
Little and Rubin (1987), Rubin (1987), and Schafer (1997) 
are fairly technical. The Graham et al. (1997) book chapter 
provides a more accessible survey of missing data meth­
ods, and Schafer and Olsen’s (1998) article gives a nice 
overview of the data augmentation approach to multiple 
imputation. Two additional recommended readings for 
the novice are those by Enders (2001) and Schafer (in 
press). 
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