The primary care PTSD screen (PC-PTSD): development and operating characteristics

Annabel Prinsa,b, Paige Ouimettec, Rachel Kimerlingb, Rebecca P. Camerond, Daniela S. Hugelshoferc, Jennifer Shaw-Hegwera, Ann Thrailkillb, Fred D. Gusmanb and Javaid I. Sheikhb

aSan Jose State University, USA
bVA Palo Alto Health Care System, USA
cWashington State University, USA
dCalifornia State University, Sacramento, USA

Correspondence to Annabel Prins, San Jose State University, One Washington Square, San Jose, CA, 95192-0120, USA

Keywords: Posttraumatic stress disorder, PTSD, Screen, Primary Care, Veterans

ABSTRACT

Posttraumatic stress disorder (PTSD) is a frequently unrecognized anxiety disorder in primary care settings. This study reports on the development and operating characteristics of a brief 4-item screen for PTSD in primary care (PC-PTSD). 188 VA primary care patients completed the PC-PTSD, the PTSD Symptom Checklist (PCL) and the Clinician Administered Scale for PTSD (CAPS). The prevalence of PTSD was 24.5%. Signal detection analyses showed that with this base rate, the PC-PTSD had an optimally efficient cutoff score of 3 for both male and female patients. A cutoff score of 2 is recommended when sensitivity rather than efficiency is optimized. The PC-PTSD outperformed the PCL in terms of overall quality, sensitivity, specificity, efficiency, and quality of efficiency. The PC-PTSD appears to be a psychometrically sound screen for PTSD with comparable operating characteristics to other screens for mental disorders.

Introduction

Psychiatric disorders are prevalent among primary care patients1. Associations with increased medical costs2 and excess medical utilization3 have led to significant efforts to identify patients with psychiatric conditions in primary care. Comprehensive screens for mental disorders have been developed that detect disorders common to primary care such as major depression, panic disorder, and alcohol abuse.4,5 Such screening efforts have led to increasingly cost-effective treatments for these disorders and improved quality of care.6-8 Efforts to identify mental disorders in primary care have not yet led to effective screening methods for posttraumatic stress disorder (PTSD). PTSD is a serious and chronic psychiatric disorder that follows overwhelmingly stressful events, such as combat exposure, sexual assault, or natural disasters. Approximately 12 to 39% of patients in primary care settings meet diagnostic criteria for PTSD.9,10 The prevalence in primary care is similar to those of depressive disorders and higher than those found for other anxiety disorders.1 Given the high prevalence and lack of attention to identification, it is no surprise that PTSD is the most frequently under-recognized and untreated anxiety disorder in primary care.11 The development of a primary care screen for PTSD is imperative to providing effective services to this population.12

Screening is warranted when a condition is prevalent; the condition significantly impacts quality of life; acceptable treatments exist; detection significantly reduces morbidity or mortality; and sensitive and specific diagnostic tests exist.13 Following these guidelines, it is clear that screening for PTSD is an important issue. In addition to being a relatively common psychiatric disorder, the majority of PTSD patients contact the health care system in primary care, rather than
sensitivity and specificity for detecting obsessive-compulsive disorder). There is also quite a bit of variability between disorders including panic disorder, generalized anxiety disorder, and major depressive disorder. PTSD is associated with increased mental health impairment, medical utilization and costs. Through only a minority of patients with PTSD receive services, a number of efficacious behavioral and pharmacological treatments exist. Treatment guidelines are also established with generally strong recommendations tailored for primary care, as well as for the determination of when more specialized psychiatric services are needed.

It is recommended that screens for psychiatric conditions be very brief (i.e., 2-4 items) self-report measures that are easy to read, understand, and complete. Screen items should be embedded within a larger battery of important patient information and easily scored for positive or negative status. Efficient screens must strike the appropriate balance between sensitivity (the ability to detect positive cases) and specificity (the ability to rule out negative cases). Sensitivity is emphasized when detection is of greater interest, e.g. when harm is low or the condition is extremely deleterious and specificity is emphasized when false-positives are a concern, e.g. when the base-rate is high or treatment is extremely costly. Perhaps the two most well established and comprehensive tools for detecting mental disorders in primary care are the Symptom-Driven Diagnostic System for Primary Care (SDDS-PC) and the Primary Care Evaluation and Reporting Diagrams (PC-EDR). Both utilize a patient questionnaire that includes one to four screening items designed to detect mental disorders commonly seen in primary care such as major depression, panic disorder, and alcohol abuse. When completed, these self-administered diagnostic interviews, the operating characteristics of these screens are poor to excellent for some disorders, e.g., alcohol abuse and depression. 42 In contrast, the sensitivity and specificity for detecting depression using the SDDS-PC was 0.98 and 0.77, respectively, and 0.69 and 0.82 using the PRIME-MD. Neither the SDDS-PC nor the PRIME-MD includes items designed to detect PTSD.

Existing measures for PTSD are largely inappropriate for use in primary care settings. There are several well- established diagnostic interviews for PTSD as well as numerous self-report symptom measures. Many of the self-report symptom measures are based on the 17 PTSD symptoms covered in the DSMIV and utilize a Likert-style response format. Although these are sometimes referred to as "screens", the length and response format are not well-suited for a fast paced primary care setting. Even shorter measures (i.e., fewer than 10 items) are often too time consuming because they require an interview to determine the nature of the traumatic event(s) and/or focus on lifetime rather than current PTSD. Furthermore, most of the very brief measures have been validated on survivors of a particular trauma or a psychiatric population rather than the general population or a sample of primary care patients. Those studies that have examined the prevalence of PTSD in primary care or ambulatory care settings have utilized the PTSD symptom checklist (PCL), a measure that contains both a trauma and a probe section and the degree to which patients have been bothered by the 17 DSM-IV symptoms. Finally, the few measures that would meet criteria for a primary care screen do not have information on psychometric properties or response operating characteristics.

The present study evaluates a brief, four-item self-report screen for PTSD in primary care. Operating characteristics are computed in a comparison to a gold standard structured interview for PTSD.

The overall performance of the PC-PTSD is compared to total scores on the PCL. Lastly, the accuracy of chart diagnosis for PTSD is compared to the accuracy of diagnosis using the PC-PTSD.

Method

PC-PTSD Development

The PC-PTSD was designed to detect the PTSD diagnosis in busy primary care clinics, where physician time and resources are limited. Detection focused on capturing meaningful, empirically derived symptom clusters. Factor analyses demonstrate four underlying factors that are specific to the PTSD construct and do not appear to be confounded by general psychological distress: re-experiencing, numbing, avoidance, and hyperarousal. Consequently, the 4-item screen reflects these four factors. Because 90% or more of the general population will experience a traumatic even in their lifetime, assessment of trauma exposure was excluded from the screen for its lack of specificity to the PTSD diagnosis. A final consideration in the development of the PC-PTSD was readability. Many of the existing measures for PTSD utilize language that requires at least a high-school reading level. For example, the PCL has a Flesch grade level of 13.2. We purposely designed our screen to be understandable for individuals at the eighth grade reading level. For example, we defined hyperarousal as "constantly on guard", the Flesch-Kincaid grade level for the PC-PTSD is 7.7. The PC-PTSD screen is presented in Table 1.

Table 1. Primary care PTSD screen (PC-PTSD)

<table>
<thead>
<tr>
<th>Item</th>
<th>Question</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In the past month, you ..</td>
</tr>
<tr>
<td>2</td>
<td>Were constantly on guard, watchful, or easily startled;</td>
</tr>
<tr>
<td>3</td>
<td>Felt numb or detached from others, activities, or your surroundings?</td>
</tr>
</tbody>
</table>

Participants and procedures

A total of 188 men and women participated in the study. Demographic characteristics of the sample are described in Table 2. The majority of VA medical care patients in the present study were female, Caucasian, married, and had some college education. Nearly 48% of the sample was not employed. Among these patients, the most frequent reasons for unemployment were due to retirement (40.9%) and poor health or disability (35.9%). The mean (SD) age of the patients was 51.1 (15.8) years.

Participations were derived from general medical and women's health clinics at the Department of Veterans Affairs Medical Center in Palo Alto and Menlo Park, CA. The investigation received approval from the Stanford University Panel on Medical Human Subjects. The study was completed in two phases: clinic-based recruitment and screening and a one-month follow-up (30±27.8 days) for a second administration of the screen and diagnostic interview. Seventy-one percent of participants also completed a medical health status, as part of a separate study. In phase 1, trained graduate students and master's level clinicians in psychology administered the PC-PTSD to active patient in the waiting rooms. The eligible pool of participants included all patients in the waiting rooms. Exclusion criteria for waiting room screening included known cognitive impairments and speaking a language other than English. All screened patients were invited to participate in the second phase of the study. Exclusion criteria at this phase included invalid telephone number, active participation in another research project that precluded participation in the current study. Of the men and women who completed the first phase, 56% completed the second phase. During the second phase, participants completed the PC-PTSD and the PCL. Trained masters' and doctoral-level psychologists then interviewed the participants for PTSD using a structured interview. Participants were paid for their participation. There were no differences on the PC-PTSD between participants and non-participants. Furthermore, comparisons between 88 participants and 56 non-participants showed no differences in age, presence of PTSD, mental health, or medical diagnoses at the time of the initial screening.

Measures

PTSD

PTSD diagnoses were assessed using the Clinician Administered PTSD Scale (CAPS). This is a structured clinical interview that assesses PTSD as defined by the Diagnostic and Statistical Manual of Mental Disorders, 4th ed., (DSM-IV). The CAPS has excellent reliability and validity. We examined inter-rater reliability using both in-person and audio-taped interviews. The inter-rater reliability for the presence or absence of a current CAPS PTSD diagnosis was excellent (kappa = 0.959).

In addition to the CAPS, participants completed the PTSD symptom checklist (PCQ), which is a 17-item self-report
The primary care PTSD screen

Results

Prevalence of PTSD

A total of 46 patients (24.8%) received a diagnosis of PTSD based on the CAPS interview (24% of female patients and 25% of male patients). There were no significant gender differences in the prevalence of PTSD.

Descriptive analyses of the PC-PTSD

The mean PC-PTSD score at initial screening was 1.3 (SD=1.6) with individual scores ranging from 0 to 4. The mean PC-PTSD score at follow-up was 1.5 (SD=1.6). The two measures correlated significantly with a Pearson correlation coefficient of 0.83 (P<.001), indicating good test-retest reliability. At both recruitment and at follow-up, individuals who met criteria for PTSD according to the CAPS endorsed more items on the PC-PTSD than did individuals who did not meet criteria. At recruitment, PTSD positive patients had a mean score of 3.2 (SD=1.5) and PTSD negative patients had a mean score of 0.7 (SD=1.2, t(18)=24.5, P<.001). At follow-up, PTSD positive patients had a mean score of 3.2 (SD=1.1) and PTSD negative patients had a mean score of 0.9 (SD=1.3, t(28)=11.18, P<.001).

Comparison of the utility of the PC-PTSD to the CAPS

Scores on the PC-PTSD were compared to scores on the CAPS. PTSD diagnosis was correctly identified in 76% of cases and missed in 22% of cases.

Discussion

The sensitivity and specificity of the PC-PTSD are similar to those reported for the detection of depression in primary care (PHQ-15 and PHQ-9). Further studies are needed to validate the PC-PTSD in different populations and settings.

References

CORRIGENDUM

We regret that there were two errors in the data analyses reported in our article, “The Primary Care PTSD screen (PC-PTSD): Development and Operating Characteristics”. Among the operating characteristics of the PC-PTSD was correctly reported in Table 3, the comparison of the PC-PTSD to the PCL (Table 4) should appear as follows:

These revised analyses are based upon a sub-sample of 167 participants who completed both the PCL and the PC-PTSD. The base rate of PTSD in this sub-sample was 26%. Thus, the values of the PC-PTSD are slightly different than those reported in Table 3, which was based on the full sample (N=188 with a base rate of 24.5%). The major correction is in the performance of the PCL. A miscalculation was inadvertently missed in the computation of PCL total scores. With this correction, an optimally efficient cut-off of 48 was identified for the PCL. As shown in Table 4, the PCL outperformed the PC-PTSD in terms of overall quality, sensitivity, specificity, efficiency and quality of efficiency.

Despite its superior performance in predicting CAPS diagnosis, the PCL may be too long (17 items) for primary care settings. In addition, the PCL used in this study (PCL-S) requires identification of a traumatic event (here, the worst Criteria A event as identified by the CAPS). As noted in the original article, many primary care physicians have limited resources for opening “Pandora’s Box”, especially when considering rates of trauma exposure in this population. Although another version of the PCL (PCL-C) uses a generic probe (“stressful experiences in the past”), less information is available on the psychometric properties and operating characteristics of this version of the PCL. Reported cutoff scores on the PCL-C have tended to be lower (30 to 40) than those obtained from PCL’s anchored to criteria A events (45 to 50).

As noted above, the analyses for the PC-PTSD were correct and consequently, there are now new implications from these analyses with regard to the use of the PC-PTSD. The optimally efficient cut-off score for the PC-PTSD is still 3, with a corresponding sensitivity of 0.78 and a specificity of 0.78. The changes in validation characteristics apply to the PCL and are reported in the correction to Table 4 which compares the two measures. Our recommendation is to utilize the PC-PTSD as a first stage screen in primary care settings. Patients screening positive (3 or more) can then be assessed for the diagnosis using the CAPS and followed in treatment using the PCL-S.

The second correction applies to the comparison made between the PC-PTSD and the chart diagnoses when using the CAPS as the gold standard. A participant was missed in the original analysis (134 medical charts were reviewed not 133) and the percentage of cases accurately identified by the chart was accidentally reversed. The PC-PTSD correctly identified 81% (not 78%) of PTSD cases using a cut point of 3 or higher; the chart diagnosis correctly identified 59% of PTSD cases (not 61%). Thus, the PC-PTSD was considerably more accurate than the chart diagnoses in identifying true cases of PTSD.

Annabel Prins
Paige Ouimette

Table 4. Comparison of the diagnostic utility of the PC-PTSD and the PCL

<table>
<thead>
<tr>
<th>Scale</th>
<th>rpb</th>
<th>Cutoff</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Efficiency</th>
<th>(\kappa(0.5))*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC-PTSD</td>
<td>0.60*</td>
<td>3</td>
<td>0.77</td>
<td>0.85</td>
<td>0.85</td>
<td>0.58</td>
</tr>
<tr>
<td>PCL</td>
<td>0.76*</td>
<td>48</td>
<td>0.84</td>
<td>0.90</td>
<td>0.89</td>
<td>0.72</td>
</tr>
</tbody>
</table>

*aP<0.001.
*bCutoff=optimally efficient cutoff score; Cutoff=optimally efficient cut-off score for the PC-PTSD is still 3, with a corresponding sensitivity of 0.78 and a specificity of 0.78. The changes in validation characteristics apply to the PCL and are reported in the correction to Table 4 which compares the two measures. Our recommendation is to utilize the PC-PTSD as a first stage screen in primary care settings. Patients screening positive (3 or more) can then be assessed for the diagnosis using the CAPS and followed in treatment using the PCL-S.

References