Does This Patient Have Posttraumatic Stress Disorder?
Rational Clinical Examination Systematic Review

Michele R. Spoont, PhD; John W. Williams Jr, MD, MHSc; Shannon Kehle-Forbes, PhD; Jason A. Nieuwsma, PhD; Monica C. Mann-Wrobel, PhD; Raz Gross, MD, MPH

IMPORTANCE Posttraumatic stress disorder (PTSD) is a relatively common mental health condition frequently seen, though often unrecognized, in primary care settings. Identifying and treating PTSD can greatly improve patient health and well-being.

OBJECTIVE To systematically review the utility of self-report screening instruments for PTSD among primary care and high-risk populations.

EVIDENCE REVIEW We searched MEDLINE and the National Center for PTSD's Published International Literature on Traumatic Stress (PILOTS) databases for articles published on screening instruments for PTSD published from January 1981 through March 2015. Study quality was rated using Quality Assessment of Diagnostic Accuracy Studies (QUADAS) criteria.

STUDY SELECTION Studies of screening instruments for PTSD evaluated using gold standard structured clinical diagnostic interviews that had interview samples of at least 50 individuals.

FINDINGS We identified 2522 citations, retrieved 318 for further review, and retained 23 cohort studies that evaluated 15 screening instruments for PTSD. Of the 23 studies, 15 were conducted in primary care settings in the United States (n = 14,707 were screened, n = 5,374 given diagnostic interview, n = 814 had PTSD) and 8 were conducted in community settings following probable trauma exposure (ie, natural disaster, terrorism, and military deployment; n = 5302 were screened, n = 4,263 given diagnostic interview, n = 393 were known to have PTSD with an additional 50 inferred by rates reported by authors). Two screens, the Primary Care PTSD Screen (PC-PTSD) and the PTSD Checklist were the best performing instruments. The 4-item PC-PTSD has a positive likelihood ratio of 6.9 (95% CI, 5.5-8.8) and a negative likelihood ratio of 0.30 (95% CI, 0.21-0.44) using the same score indicating a positive screen as used by the Department of Veterans Affairs in all of its primary care clinics. The 17-item PTSD Checklist has a positive likelihood ratio of 5.2 (95% CI, 3.6-7.5) and a negative likelihood ratio of 0.33 (95% CI, 0.29-0.37) using scores around 40 as indicating a positive screen. Using the same score employed by primary care clinics in the Department of Veterans Affairs to indicate a positive screen, the 4-item PC-PTSD has a sensitivity of 0.69 (95% CI, 0.55-0.81), a specificity of 0.92 (95% CI, 0.86-0.95), a positive likelihood ratio of 8.49 (95% CI, 5.56-12.96) and a negative likelihood ratio of 0.22 (95% CI, 0.19-0.25). For the 17-item PTSD Checklist, scores around 40 as indicating a positive screen, have a sensitivity of 0.70 (95% CI, 0.64-0.77), a specificity of 0.91 (95% CI, 0.83-0.93), a positive likelihood ratio of 6.8 (95% CI, 4.7-9.9) and a negative likelihood ratio of 0.33 (95% CI, 0.27-0.40).

CONCLUSIONS AND RELEVANCE Two screening instruments, the PC-PTSD and the PTSD Checklist, show reasonable performance characteristics for use in primary care clinics or in community settings with high-risk populations. Both are easy to administer and interpret and can readily be incorporated into a busy practice setting.

Corrected on January 5, 2016.

Copyright 2015 American Medical Association. All rights reserved.
Prevalence of PTSD

Although approximately 8% of US adults will develop PTSD at some time during their lives, in any given year about 4% will have the disorder.21,35,36 In primary care settings, estimates of PTSD prevalence rates among clinic patients are dependent on the trauma exposure rate of the clinic population. For example, base rates of PTSD have been estimated to be 12% in both a university-affiliated community clinic and a Department of Veterans Affairs (VA) primary care clinic, but as high as 23% in an inner-city primary care clinic.37,39

For a given individual, the estimated risk of developing PTSD following trauma exposure can range from 1% to greater than 50%.6,40 and depends, in part, on whether the traumatic experience was intentionally inflicted (eg, assault or war) or nonintentional (eg, natural disaster or accident).41 Although nonintentional trauma is associated with a higher rate of PTSD immediately following the event, the 1-year prevalence rate after trauma is higher among those who experienced an intentionally inflicted trauma.41 For patients who develop PTSD following exposure to a nonintentional trauma, PTSD symptoms will remit in about half over the following year. In contrast, among those exposed to an intentional trauma, the illness expression may be delayed and some who had minimal symptoms initially may go on to develop PTSD over the ensuing months.41

Who Should Be Screened for PTSD?

Although the US Preventive Services Task Force does not address screening for PTSD,42 the NICE UK guidelines recommend screening for PTSD when there is a known exposure to a traumatic stressor (eg, following a natural disaster or a motor vehicle crash), or when the patient’s presentation is suggestive of PTSD.34 Some populations known to have high prevalence rates of PTSD are routinely screened—an approach known as case-finding. For example, the Department of Defense screens for PTSD in all troops after deployment, and the VA has a system-wide screening program for all veterans who use VA services.43 Other populations in which routine screening might be considered include refugees, disaster survivors, patients at inner-city clinics, and those who have high-risk occupations (eg, firefighters and police officers).38,44,45

Although patients with known recent trauma exposure are obviously at higher risk, information about trauma exposure may not be collected or available. The absence of a recent exposure to trauma, however, does not preclude the presence of PTSD because patients with past traumatic experiences may have acute PTSD exacerbations triggered by recent life stressors.5 Although PTSD is characterized by significant psychological distress, many patients with PTSD may initially present with somatic symptoms
rather than with overt mental health complaints. For those who have experienced a recent traumatic event, those who have evidence of PTSD symptoms or those whose symptoms are unexplained or do not respond to typical treatments (e.g., for pain or insomnia), a diagnosis of PTSD should be considered. In general medical settings, clinicians will often begin the evaluation with a screening instrument—an approach that may improve diagnostic efficiency, is acceptable to patients, and may facilitate further symptom disclosure. Those whose PTSD screens are positive can then be asked about trauma exposure. Although clinicians need to exercise thoughtfulness and care when interviewing patients about traumatic experiences, inquiries by physicians about whether a patient has experienced a traumatic event should be explicit and direct. Patients may be reluctant to reveal the details of traumatic experiences, and it is not necessary to ascertain these details to diagnose or treat PTSD. For primary care clinicians, determining if a trauma occurred, its general type (e.g., combat or sexual assault), when it occurred, and if any recent events have led to symptom exacerbation is sufficient for diagnostic purposes. We reviewed the literature to identify the screening questionnaires for PTSD that have the highest diagnostic accuracy in primary care or community settings.

Methods

Search Strategy and Study Selection
To identify articles evaluating screening instruments for PTSD, we searched Ovid MEDLINE from January 1981 through March 2015 using standard search terms (eAppendix 1 in the Supplement). The search was limited to peer-reviewed articles involving human participants and published in the English language. A similar search strategy was used for searching the National Center for PTSD’s Published International Literature on Traumatic Stress (PILOTS) database and for a limited VA report on a similar topic.46,47 We searched reference lists of relevant articles and existing reviews for additional citations.

Citations were reviewed using these inclusion criteria: (1) publication containing original data; (2) study conducted in the United States, Canada, United Kingdom, New Zealand, or Australia; (3) sample size greater than 50 adults; (4) study involved screening of adults in primary care clinical settings or in high-risk groups (i.e., rescue workers or military personnel after deployment); (5) study is an evaluation of a tool for screening for PTSD; (6) study included a gold standard interview-based assessment of PTSD (i.e., Clinician-Administered PTSD Scale48 or other structured clinical interview); and (7) study reported outcomes of interest (i.e., diagnostic accuracy).

Reference Standard
A structured diagnostic clinical interview, using the recently updated Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria, is the gold standard for diagnosis. At the time of our review, all studies employed the DSM-IV criteria.49 DSM-5 includes all 17 of the DSM-IV criteria but has a more stringent definition of what qualifies as a traumatic event, and 2 of the symptom clusters include new or reconceptualized symptoms (Table 1). Most studies comparing prevalence rates using DSM-IV vs DSM-5 criteria have found relatively minimal effect of the new diagnostic criteria on the population prevalence estimates, and large overlaps of cases identified.36,50,51

Data Abstraction and Quality Ratings
Study characteristics (e.g., clinical setting or sample), quality characteristics, and results (e.g., sensitivity or specificity) were extracted from each identified study by co-investigators and confirmed by a senior author (MS, JWW). When provided, raw data for the 2 × 2 table were extracted, and when not provided, data were derived from other performance characteristics such as sensitivity and specificity. Potential sources of bias were assessed with the Quality Assessment of Diagnostic Accuracy Studies (QUADAS) tool.52 In addition to QUADAS quality ratings of individual study features (eAppendix 2 in the Supplement), we summarized the overall quality of the evidence for each study using the Rational Clinical Examination levels of evidence.53 Studies that met the lowest level of evidence (i.e., level 5) were excluded from the review.

Statistical Methods
For each study, 2 × 2 contingency tables were generated, and sensitivity, specificity, and likelihood ratios were calculated. The positive likelihood ratio (LR+) is defined as the ratio between the probability of a positive screen given the disease is present and the probability of a positive screen given the disease is absent. The negative likelihood ratio (LR−) is defined as the ratio between the probability of a negative screen given the disease is present and the probability of a negative screen given the disease is absent. The diagnostic odds ratio (DOR) quantifies the overall accuracy of an instrument, with higher values indicating greater accuracy (DOR = LR+ / LR−).

Studies that were quality level 1 through 3 were used to create summary statistics. For instruments evaluated in only 2 studies, we reported the range. When findings were evaluated in 3 studies, we calculated summary sensitivity, specificity, and likelihood ratios using a univariate random-effects model (Comprehensive Meta-Analysis [Biostat], version 2.2046). We used bivariate analyses when there were at least 4 studies that evaluated an instrument (PROC GLIMMIX [SAS Institute], version 9.2). For the PTSD Checklist instrument, we analyzed results using threshold ranges (30-35, 36-44, and 45-50) as recommended by the Department of Veterans Affairs National Center for PTSD.54 Heterogeneity of the likelihood ratios for findings assessed in at least 3 studies was evaluated using the I2 statistic, which describes the percentage of total variation across studies that is due to heterogeneity rather than chance. Heterogeneity was categorized as low, moderate, and high corresponding to I2 values of 25%, 50%, and 75%.55 For the PTSD Checklist, there were sufficient studies to conduct an additional influence analysis, removing each study and recalculating the summary estimate to evaluate for outlier effects, and a meta-regression to evaluate the association between PTSD prevalence and instrument performance characteristics.

Results

Study Characteristics
We identified 2522 citations, retrieved 318 for full-text review and retained 23 studies meeting eligibility criteria (Figure). One study56...
Table 1. DSM-5 Diagnostic Criteria and Questions to Assess PTSD Once Trauma Exposure Has Been Established*

<table>
<thead>
<tr>
<th>Symptoms</th>
<th>Suggested Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intrusion Symptoms (≥1 Meets PTSD Criteria)</td>
<td></td>
</tr>
<tr>
<td>Recurrent, involuntary, intrusive distressing memories of the traumatic event(s)</td>
<td>Do you find yourself thinking about the trauma even when you don’t want to? Can you push those thoughts out of your mind?</td>
</tr>
<tr>
<td>Recurrent distressing dreams related to the traumatic event(s)</td>
<td>Are you having bad dreams or nightmares about the trauma? If so, how often are you having them?</td>
</tr>
<tr>
<td>Dissociative reactions</td>
<td>Sometimes people who have had traumatic experiences can have brief periods when they feel that they are back in that previous traumatic experience, as though they are reliving it, even though the actual event happened in the past. Has that happened to you?</td>
</tr>
<tr>
<td>Intense or prolonged distress at exposure to triggers that resemble or symbolize the traumatic event(s)</td>
<td>Have you been getting emotionally upset when something reminds you of the trauma? How long did it last? How bad did it get?</td>
</tr>
<tr>
<td>Marked physiological reactions at exposure to triggers that resemble or symbolize the traumatic event(s)</td>
<td>When something reminds you of the trauma, do you have physical reactions (eg, heart pounding, trouble breathing, or sweating)?</td>
</tr>
<tr>
<td>Avoidance Symptoms (≥1 Meets PTSD Criteria)</td>
<td></td>
</tr>
<tr>
<td>Avoidance of distressing memories, thoughts, or feelings associated with the traumatic event(s)</td>
<td>Have you been trying to avoid thinking about the trauma?</td>
</tr>
<tr>
<td>Avoidance of external reminders of the traumatic event(s)</td>
<td>Have you tried to avoid people or things that remind you of the trauma?</td>
</tr>
<tr>
<td>Alterations in Cognition and Mood (≥2 Meets PTSD Criteria)</td>
<td></td>
</tr>
<tr>
<td>Inability to recall an important aspect of the traumatic event(s)</td>
<td>Do you have trouble remembering some important part of the trauma?</td>
</tr>
<tr>
<td>Persistent negative beliefs or expectations about oneself, others, or the world</td>
<td>Are you having more negative thoughts about yourself, other people, or the world since the trauma?</td>
</tr>
<tr>
<td>Persistent, distorted cognitions about the causes or consequences of the traumatic event(s)</td>
<td>Do you feel like the trauma is all your fault? Why? Do you think that it is all someone else’s fault?</td>
</tr>
<tr>
<td>Persistent negative emotional state</td>
<td>Have you been feeling bad since the trauma—having lots of anger, fear, anxiety, or guilt much of the time?</td>
</tr>
<tr>
<td>Diminished interest</td>
<td>Have you been less interested in things that you used to enjoy before the trauma?</td>
</tr>
<tr>
<td>Feelings of detachment or estrangement from others</td>
<td>Have you been feeling distant from people or like you can’t connect with them? Does this include family?</td>
</tr>
<tr>
<td>Persistent inability to experience positive emotions</td>
<td>Have you had trouble having good feelings (eg, happiness or love) since the trauma? Do you feel emotionally numb?</td>
</tr>
<tr>
<td>Marked Alteration in Arousal and Reactivity (≥2 Meets PTSD Criteria)</td>
<td></td>
</tr>
<tr>
<td>Irritable behavior and angry outbursts</td>
<td>Have you been feeling more irritable or angry and acting on it? Do other people notice?</td>
</tr>
<tr>
<td>Reckless or self-destructive behavior</td>
<td>Have you been more reckless, taking too many risks or bigger risks even though you could have been really hurt? Have you injured yourself?</td>
</tr>
<tr>
<td>Hypervigilance</td>
<td>Do you feel hyper alert, constantly looking over your shoulder even when you don’t really need to?</td>
</tr>
<tr>
<td>Exaggerated startle response</td>
<td>Do you feel like you are more jumpy and easily startled? More so than other people?</td>
</tr>
<tr>
<td>Problems with concentration</td>
<td>Have you been having a harder time focusing?</td>
</tr>
<tr>
<td>Sleep disturbances</td>
<td>Have you been having trouble sleeping? What kinds of problems are you having?</td>
</tr>
</tbody>
</table>

Abbreviations: DSM-5, Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; PTSD, posttraumatic stress disorder.
*To meet diagnostic criteria for PTSD, these symptoms must not be due to any exclusions (eg, substance abuse or a medical condition). If full diagnostic criteria are not met until at least 6 months after the event, consider PTSD with delayed expression.
*Symptoms must persist for at least 1 month and cause significant distress or impairment; however, symptom intensity often fluctuates over time. For each symptom, ask about duration: “How long have you been having this symptom?”

Included 3 separate patient samples that were analyzed as separate studies. Of the 23 studies, 15 were conducted in primary care settings in the United States (n = 14,707 were screened, n = 5,374 given diagnostic interview, n = 814 had PTSD) and 8 were conducted in community settings following probable trauma exposure (ie, natural disaster, terrorism, and military deployment; n = 5,302 were screened, n = 4,263 given diagnostic interview, n = 393 were known to have PTSD with an additional 50 inferred by rates reported by authors). Samples consisted of only women in 5 studies, only men in 2 studies, and only military personnel or veterans in 12 studies. Six of the 23 studies were classified as level 1 or 2 quality—the highest-quality ratings. Among lower-quality studies, common study limitations included a limited spectrum of patients, the presence of verification bias (whereby all screened patients did not have the presence or absence of PTSD verified), and an absence of information about study withdrawals. QUADAS ratings and study characteristics for each study are described in eAppendices 2 through 5 in the Supplement.

Fifteen screening instruments were compared with a structured diagnostic interview for PTSD (Table 2). Of the 15 instruments, 12 were unique and 3 were abbreviated versions of 2 screening instruments that were evaluated independently. For some instruments, results were reported at multiple thresholds. Nine of these instruments assess for PTSD exclusively, whereas 6 screen for multiple mental health disorders. Two are shortened versions of the 17-item PTSD Checklist, and 1 is a shortened version of the 7-item...
Generalized Anxiety Disorder (GAD-7) screen. All but 2 instruments were scored by totaling items; both exceptions had a 2-part scoring algorithm consisting of endorsement of symptom question(s) and endorsement of an impairment question.

All screens were self-administered, paper-and-pencil screening tests and ranged from 1 to 27 items. No scale was difficult to administer, and even the longest could be completed by the vast majority of patients prior to their appointment.72

Prevalence of PTSD
Prevalence rates ascertained from gold standard diagnostic interviews for the 20 patient samples included in this report that contained information about prevalence range from 5% in a community primary care sample to 35% in a sample of women receiving care at Veterans Health Administration facilities.58 Based on diagnostic interviews, the random-effects summary estimate for prevalence of PTSD was 13.5% (95% CI, 5.0%-35.5%) in primary care studies,58,59,61,67-69,71-76 and 8.8% (95% CI, 6.5%-41.1%) for the specialty clinics or samples with known trauma exposure.56,62-64,70,77

Performance Characteristics of Self-Report Screening Instruments
PTSD-Specific Instruments
For 2 instruments (PTSD Checklist, and Primary Care PTSD screen [PC-PTSD]), there were a sufficient number of studies to calculate...
summary estimates (Table 3). The 17-item PTSD Checklist was the most frequently studied screening instrument, and the shorter 4-item PC-PTSD was the second most frequently studied instrument. Using the same score employed by primary care clinics in the Department of Veterans Affairs to indicate a positive screen (≥3), the 4-item PC-PTSD has a sensitivity of 0.69 (95% CI, 0.55-0.81), a specificity of 0.92 (95% CI, 0.86-0.95), a positive likelihood ratio of 8.49 (95% CI, 5.6-12.96) and a negative likelihood ratio of 0.34 (95% CI, 0.22-0.48). For the 4-item PC-PTSD was the second most frequently studied instrument, and the shorter 4-item PC-PTSD was the second most frequently studied instrument. Using the same score employed by primary care clinics in the Department of Veterans Affairs to indicate a positive screen (≥3), the 4-item PC-PTSD has a sensitivity of 0.69 (95% CI, 0.55-0.81), a specificity of 0.92 (95% CI, 0.86-0.95), a positive likelihood ratio of 8.49 (95% CI, 5.6-12.96) and a negative likelihood ratio of 0.34 (95% CI, 0.22-0.48). For the 17-item PTSD Checklist, scores ranging from 38 to 44 as indicating a positive screen,50 have a sensitivity of 0.70 (95% CI, 0.64-0.77), a specificity of 0.90 (95% CI, 0.84-0.93), a positive likelihood ratio of 6.8 (95% CI, 4.7-9.9) and a negative likelihood ratio of 0.34 (95% CI, 0.22-0.48). Diagnostic accuracy, as expressed by the DOR, of the PC-PTSD and PTSD Checklist were not significantly different (P = .80).

We conducted 3 sensitivity analyses. First, we repeated the analyses using only those studies reporting results for all thresholds to ensure that limited reporting of results did not influence our findings. We then compared results using only studies conducted in comparable types of samples (eg, primary care) to ascertain if sample variation affected our findings. In both cases we found that the diagnostic accuracy was not significantly different. We also conducted influence analyses to examine the effect of individual studies on the findings. Results of the influence analysis showed that the screener summary estimates were not disproportionately affected by any individual study. For the PTSD Checklist, we were able to conduct an additional sensitivity analysis to evaluate the performance of the screen in populations with different PTSD prevalence estimates. Using the high-quality studies, we conducted a meta-regression analysis to examine the relationship between the prevalence of PTSD and instrument performance. The prevalence of PTSD did not account for any of the variance attributable to the threshold used to determine positivity for either the LR+ (R² = 87%, R² = 0%) or LR− (R² = 86%, R² = 0%), allowing the inference that the PTSD Checklist could be used in different prevalence settings.

There is very little information about screen performance based on specific population characteristics. For the PC-PTSD, the range of positive likelihood ratios for men was 7.7 to 12.0, whereas for women the range was 4.4 to 4.9.68,74 In 1 high-quality study, the PC-PTSD Checklist was found to perform slightly less well for women compared to men (P = .80). We conducted 3 sensitivity analyses. First, we repeated the analyses using only those studies reporting results for all thresholds to ensure that limited reporting of results did not influence our findings. We then compared results using only studies conducted in comparable types of samples (eg, primary care) to ascertain if sample variation affected our findings. In both cases we found that the diagnostic accuracy was not significantly different. We also conducted influence analyses to examine the effect of individual studies on the findings. Results of the influence analysis showed that the screener summary estimates were not disproportionately affected by any individual study. For the PTSD Checklist, we were able to conduct an additional sensitivity analysis to evaluate the performance of the screen in populations with different PTSD prevalence estimates. Using the high-quality studies, we conducted a meta-regression analysis to examine the relationship between the prevalence of PTSD and instrument performance. The prevalence of PTSD did not account for any of the variance attributable to the threshold used to determine positivity for either the LR+ (R² = 87%, R² = 0%) or LR− (R² = 86%, R² = 0%), allowing the inference that the PTSD Checklist could be used in different prevalence settings.

There is very little information about screen performance based on specific population characteristics. For the PC-PTSD, the range of positive likelihood ratios for men was 7.7 to 12.0, whereas for women the range was 4.4 to 4.9.68,74 In 1 high-quality study, the PTSD Checklist was found to perform slightly less well for
Does This Patient Have Posttraumatic Stress Disorder?

The Rational Clinical Examination

Clinical Review & Education

August 4, 2015 Volume 314, Number 5 507

Copyright 2015 American Medical Association. All rights reserved.

Do not hallucinate.

Younger African American veterans. We found no studies in primary care or high-risk community samples that examined whether the presence of other specific psychiatric conditions (eg, traumatic brain injury or drug abuse) affected the performance characteristics of any of the PTSD screening tools.

Multicondition and Anxiety Instruments

Two multicondition instruments, My Mood Monitor (M3) and Provisional Diagnostic Interview-4 Anxiety (PDI-4A), and 3 anxiety and general distress instruments, K6, GAD-7, and Anxiety and Depression Detector (ADD) have been evaluated in primary care settings (Table 3). Each instrument has been evaluated in a single study and each in a primary care or community setting. A positive screen for 2 of the instruments was achieved by 1 or 2 items (ADD or PDI-4A), yielding low positive likelihood ratios (<3.0). The M3 and GAD-7 performed slightly better, but because positive likelihood ratios were 3.7 (95% CI, 3.1-4.4) and 3.0 (95% CI, 2.6-3.6), other instruments have greater clinical utility. Overall, these screens performed less well than those that were specifically designed to detect PTSD.

Other Outcomes

Patients took an average of 5 minutes to complete a 27-item screen and only 1% reported insufficient time to complete it prior to the appointment.72 Both patients and physicians felt that screening facilitated discussion of mental health issues in the subsequent primary care encounter, and 80% of primary care physicians reported that the screen was helpful in interactions with their patients.72

Discussion

Although many PTSD screening instruments have been evaluated in primary care or community settings, few have been evaluated in more than 1 study. Two of the more widely studied PTSD-specific screening instruments, the PC-PTSD and PTSD Checklist, have good performance characteristics and are feasible for use in primary care. Currently, the PC-PTSD is used throughout the VA health care system. Both are simple to score and interpret. The PC-PTSD has the advantage of brevity and clearly defined cut scores across populations, whereas the best cut score for the PTSD Checklist requires some knowledge of the population prevalence of PTSD. Both instruments have been evaluated at multiple thresholds and have good sensitivity and specificity.

Study Strengths

This study was a highly structured systematic review of the published literature. We used a broad literature search of relevant databases, double data abstraction, and validated criteria to assess the quality of identified studies. To evaluate the stability of summary estimates, we performed influence and sensitivity analyses; summary estimates were stable. Finally, we attempted to examine factors relevant to the implementation of the screens.

Study Limitations

Several studies had nonrandom sampling or verification bias, both of which may inflate the apparent effectiveness of the screening tools evaluated. In addition, in some studies the authors derived the population prevalence of PTSD and in others we had to estimate prevalence rate. In either case, those derived prevalence rates may have introduced inaccuracy. Evidence regarding the performance characteristics of the PTSD screening instruments for important subpopulations, including women, racial and ethnic minorities, and older adults, was absent, sparse, or inconsistent. Many of the studies involved military or veteran samples, and it is possible that the findings may be less generalizable because of this; however, because many of the studies involving veteran samples included high percentages of women participants, the generalizability may not be as limited given that women veterans, like women in the general population, are more likely to experience sexual trauma.76,79

Although the studies we reviewed used DSM-III or DSM-IV diagnostic criteria for PTSD, the DSM-5 criteria define trauma more explicitly, expand the diagnostic clusters from 3 to 4, and include 2 additional symptoms. These changes could affect the performance characteristics of the screening measures reviewed. There is now a DSM-5 version of the PTSD Checklist (PCL-5), which appears to perform similarly, but which has yet to be fully validated.80 There were too few studies to use formal statistical methods to evaluate for publication bias. Publication bias may exaggerate the estimate of test accuracy if publication is related to the performance of the screening instrument. A stronger evidence base is needed to determine the reliability of these findings and their potential clinical effect. High-quality studies that address these design limitations and evaluate versions of the screens updated to reflect DSM-5 criteria using gold standard diagnostic assessments are needed. Ideally, these studies should also evaluate the effects of population screening on patient health outcomes.

Bottom Line

General medical professionals are providing mental health treatment more than ever before,81 and primary care physicians would benefit from increasing their knowledge about the assessment of PTSD. Based on performance characteristics, the number of studies, and precision of the estimates for the likelihood ratios, we recommend the PC-PTSD and the PTSD Checklist as the preferred instruments for screening or case-finding for PTSD in primary care or community settings, or among high-risk cohorts. Both instruments, along with manuals for scoring and interpretation, are available online.82 Because both instruments are self-administered, minimal training is needed to use them. For patients with a positive screening result, a definitive diagnosis based on the DSM-5 criteria must be established through further evaluation by a primary care physician or mental health clinician using questions such as those in Table 1. Although referring patients to a mental health clinician may be an option for some patients, primary care physicians should familiarize themselves with the diagnostic criteria for PTSD given that a significant minority of patients may prefer to work with their primary care physician and refuse referral to a mental health clinician, may have difficulty accessing mental health providers, or may not follow through with a mental health referral for other reasons.

jama.com
Scenario Resolution

Case

Mr. L's recent history of serious injury and a hospital stay suggests a high pretest probability that his symptoms may be from PTSD. To get more information about the cause of his symptoms, you give him the PTSD Checklist screen, which has a score range of 17 through 85, and order a hemoglobin A1c test. Reading your previous notes, you determine that he only had mild postconcussive headaches immediately after the accident and that these symptoms had resolved within 1 week, suggesting that mild head trauma is less likely to be causing his symptoms. Mr. L's hemoglobin A1c is at the same borderline level as it was 1 year ago, but you find that his PTSD Checklist total score is 55—well above the cutoff score for any clinical population, and strongly indicative of PTSD. You evaluate Mr. L. for PTSD symptoms and find that he has most of them. You explain the diagnosis of PTSD to him and discuss both pharmacological and psychological treatment options.

